Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Nat Commun ; 14(1): 8039, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38052772

ABSTRACT

Monoacylglycerol lipase (MAGL) regulates endocannabinoid 2-arachidonoylglycerol (2-AG) and eicosanoid signalling. MAGL inhibition provides therapeutic opportunities but clinical potential is limited by central nervous system (CNS)-mediated side effects. Here, we report the discovery of LEI-515, a peripherally restricted, reversible MAGL inhibitor, using high throughput screening and a medicinal chemistry programme. LEI-515 increased 2-AG levels in peripheral organs, but not mouse brain. LEI-515 attenuated liver necrosis, oxidative stress and inflammation in a CCl4-induced acute liver injury model. LEI-515 suppressed chemotherapy-induced neuropathic nociception in mice without inducing cardinal signs of CB1 activation. Antinociceptive efficacy of LEI-515 was blocked by CB2, but not CB1, antagonists. The CB1 antagonist rimonabant precipitated signs of physical dependence in mice treated chronically with a global MAGL inhibitor (JZL184), and an orthosteric cannabinoid agonist (WIN55,212-2), but not with LEI-515. Our data support targeting peripheral MAGL as a promising therapeutic strategy for developing safe and effective anti-inflammatory and analgesic agents.


Subject(s)
Monoacylglycerol Lipases , Monoglycerides , Animals , Mice , Rimonabant , Endocannabinoids , Analgesics/pharmacology , Receptor, Cannabinoid, CB1 , Mice, Inbred C57BL
2.
JACC Basic Transl Sci ; 8(10): 1334-1353, 2023 Oct.
Article in English | MEDLINE | ID: mdl-38094682

ABSTRACT

Cardiovascular diseases (CVDs) are the leading cause of death among elderly people. Proprotein convertase subtilisin/kexin type 9 (PCSK9) is an important regulator of cholesterol metabolism. Herein, we investigated the role of PCSK9 in age-related CVD. Both in humans and rats, blood PCSK9 level correlated positively with increasing age and the development of cardiovascular dysfunction. Age-related fatty degeneration of liver tissue positively correlated with serum PCSK9 levels in the rat model, while development of age-related nonalcoholic fatty liver disease correlated with cardiovascular functional impairment. Network analysis identified PCSK9 as an important factor in age-associated lipid alterations and it correlated positively with intima-media thickness, a clinical parameter of CVD risk. PCSK9 inhibition with alirocumab effectively reduced the CVD progression in aging rats, suggesting that PCSK9 plays an important role in cardiovascular aging.

3.
Cells ; 12(24)2023 12 07.
Article in English | MEDLINE | ID: mdl-38132102

ABSTRACT

Alcohol-induced cardiomyopathy (ACM) has a poor prognosis with up to a 50% chance of death within four years of diagnosis. There are limited studies investigating the potential of abstinence for promoting repair after alcohol-induced cardiac damage, particularly in a controlled preclinical study design. Here, we developed an exposure protocol that led to significant decreases in cardiac function in C57BL6/J mice within 30 days; dP/dt max decreased in the mice fed alcohol for 30 days (8054 ± 664.5 mmHg/s compared to control mice: 11,188 ± 724.2 mmHg/s, p < 0.01), and the dP/dt min decreased, as well (-7711 ± 561 mmHg/s compared to control mice: -10,147 ± 448.2 mmHg/s, p < 0.01). Quantitative PCR was used to investigate inflammatory and fibrotic biomarkers, while histology was used to depict overt changes in cardiac fibrosis. We observed a complete recovery of function after abstinence (dP/dt max increased from 8054 ± 664 mmHg/s at 30 days to 11,967 ± 449 mmHg/s after abstinence, p < 0.01); further, both inflammatory and fibrotic biomarkers decreased after abstinence. These results lay the groundwork for future investigation of the molecular mechanisms underlying recovery from alcohol-induced damage in the heart.


Subject(s)
Cardiomyopathies , Heart , Mice , Animals , Cardiomyopathies/etiology , Blood Pressure , Ethanol/adverse effects , Biomarkers
4.
Geroscience ; 45(5): 3059-3077, 2023 10.
Article in English | MEDLINE | ID: mdl-37726433

ABSTRACT

The liver, as a crucial metabolic organ, undergoes significant pathological changes during the aging process, which can have a profound impact on overall health. To gain a comprehensive understanding of these alterations, we employed data-driven approaches, along with biochemical methods, histology, and immunohistochemistry techniques, to systematically investigate the effects of aging on the liver. Our study utilized a well-established rat aging model provided by the National Institute of Aging. Systems biology approaches were used to analyze genome-wide transcriptomics data from liver samples obtained from young (4-5 months old) and aging (20-21 months old) Fischer 344 rats. Our findings revealed pathological changes occurring in various essential biological processes in aging livers. These included mitochondrial dysfunction, increased oxidative/nitrative stress, decreased NAD + content, impaired amino acid and protein synthesis, heightened inflammation, disrupted lipid metabolism, enhanced apoptosis, senescence, and fibrosis. These results were validated using independent datasets from both human and rat aging studies. Furthermore, by employing co-expression network analysis, we identified novel driver genes responsible for liver aging, confirmed our findings in human aging subjects, and pointed out the cellular localization of the driver genes using single-cell RNA-sequencing human data. Our study led to the discovery and validation of a liver-specific gene, proprotein convertase subtilisin/kexin type 9 (PCSK9), as a potential therapeutic target for mitigating the pathological processes associated with aging in the liver. This finding envisions new possibilities for developing interventions aimed to improve liver health during the aging process.


Subject(s)
Proprotein Convertase 9 , Transcriptome , Humans , Rats , Animals , Proprotein Convertase 9/genetics , Proprotein Convertase 9/metabolism , Liver/metabolism , Aging/genetics
5.
Nat Commun ; 14(1): 1447, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36922494

ABSTRACT

Cannabinoid CB2 receptor (CB2R) agonists are investigated as therapeutic agents in the clinic. However, their molecular mode-of-action is not fully understood. Here, we report the discovery of LEI-102, a CB2R agonist, used in conjunction with three other CBR ligands (APD371, HU308, and CP55,940) to investigate the selective CB2R activation by binding kinetics, site-directed mutagenesis, and cryo-EM studies. We identify key residues for CB2R activation. Highly lipophilic HU308 and the endocannabinoids, but not the more polar LEI-102, APD371, and CP55,940, reach the binding pocket through a membrane channel in TM1-TM7. Favorable physico-chemical properties of LEI-102 enable oral efficacy in a chemotherapy-induced nephropathy model. This study delineates the molecular mechanism of CB2R activation by selective agonists and highlights the role of lipophilicity in CB2R engagement. This may have implications for GPCR drug design and sheds light on their activation by endogenous ligands.


Subject(s)
Cannabinoid Receptor Agonists , Cannabinoids , Cannabinoid Receptor Agonists/pharmacology , Receptors, Cannabinoid , Cannabinoids/pharmacology , Receptor, Cannabinoid, CB1/genetics , Receptor, Cannabinoid, CB2/genetics
8.
Geroscience ; 44(3): 1727-1741, 2022 06.
Article in English | MEDLINE | ID: mdl-35460032

ABSTRACT

Diabetes mellitus promotes accelerated cardiovascular aging and inflammation, which in turn facilitate the development of cardiomyopathy/heart failure. High glucose-induced oxidative/nitrative stress, activation of various pro-inflammatory, and cell death pathways are critical in the initiation and progression of the changes culminating in diabetic cardiomyopathy. Cannabinoid 2 receptor (CB2R) activation in inflammatory cells and activated endothelium attenuates the pathological changes associated with atherosclerosis, myocardial infarction, stroke, and hepatic cardiomyopathy. In this study, we explored the role of CB2R signaling in myocardial dysfunction, oxidative/nitrative stress, inflammation, cell death, remodeling, and fibrosis associated with diabetic cardiomyopathy in type 1 diabetic mice. Control human heart left ventricles and atrial appendages, similarly to mouse hearts, had negligible CB2R expression determine by RNA sequencing or real-time RT-PCR. Diabetic cardiomyopathy was characterized by impaired diastolic and systolic cardiac function, enhanced myocardial CB2R expression, oxidative/nitrative stress, and pro-inflammatory response (tumor necrosis factor-α, interleukin-1ß, intracellular adhesion molecule 1, macrophage inflammatory protein-1, monocyte chemoattractant protein-1), macrophage infiltration, fibrosis, and cell death. Pharmacological activation of CB2R with a selective agonist attenuated diabetes-induced inflammation, oxidative/nitrative stress, fibrosis and cell demise, and consequent cardiac dysfunction without affecting hyperglycemia. In contrast, genetic deletion of CB2R aggravated myocardial pathology. Thus, selective activation of CB2R ameliorates diabetes-induced myocardial tissue injury and preserves the functional contractile capacity of the myocardium in the diabetic milieu. This is particularly encouraging, since unlike CB1R agonists, CB2R agonists do not elicit psychoactive activity and cardiovascular side effects and are potential clinical candidates in the treatment of diabetic cardiovascular and other complications.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Cardiomyopathies , Animals , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Diabetic Cardiomyopathies/etiology , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/pathology , Fibrosis , Inflammation/pathology , Mice , Oxidative Stress , Receptors, Cannabinoid/metabolism , Receptors, Cannabinoid/therapeutic use
9.
J Clin Invest ; 131(9)2021 05 03.
Article in English | MEDLINE | ID: mdl-33724957

ABSTRACT

Cholangiopathies caused by biliary epithelial cell (BEC) injury represent a leading cause of liver failure. No effective pharmacologic therapies exist, and the underlying mechanisms remain obscure. We aimed to explore the mechanisms of bile duct repair after targeted BEC injury. Injection of intermedilysin into BEC-specific human CD59 (hCD59) transgenic mice induced acute and specific BEC death, representing a model to study the early signals that drive bile duct repair. Acute BEC injury induced cholestasis followed by CCR2+ monocyte recruitment and BEC proliferation. Using microdissection and next-generation RNA-Seq, we identified 5 genes, including Mapk8ip2, Cdkn1a, Itgb6, Rgs4, and Ccl2, that were most upregulated in proliferating BECs after acute injury. Immunohistochemical analyses confirmed robust upregulation of integrin αvß6 (ITGß6) expression in this BEC injury model, after bile duct ligation, and in patients with chronic cholangiopathies. Deletion of the Itgb6 gene attenuated BEC proliferation after acute bile duct injury. Macrophage depletion or Ccr2 deficiency impaired ITGß6 expression and BEC proliferation. In vitro experiments revealed that bile acid-activated monocytes promoted BEC proliferation through ITGß6. Our data suggest that BEC injury induces cholestasis, monocyte recruitment, and induction of ITGß6, which work together to promote BEC proliferation and therefore represent potential therapeutic targets for cholangiopathies.


Subject(s)
Antigens, Neoplasm/biosynthesis , Bile Acids and Salts/metabolism , Biliary Tract/metabolism , Cell Proliferation , Epithelial Cells/metabolism , Integrins/biosynthesis , Macrophage Activation , Macrophages/metabolism , Up-Regulation , Animals , Antigens, Neoplasm/genetics , Bile Acids and Salts/genetics , Female , Humans , Integrins/genetics , Male , Mice , Mice, Transgenic , RNA-Seq
10.
Molecules ; 25(15)2020 Jul 28.
Article in English | MEDLINE | ID: mdl-32731559

ABSTRACT

Search for new cardioprotective therapies is of great importance since no cardioprotective drugs are available on the market. In line with this need, several natural biomolecules have been extensively tested for their potential cardioprotective effects. Previously, we have shown that biglycan, a member of a diverse group of small leucine-rich proteoglycans, enhanced the expression of cardioprotective genes and decreased ischemia/reperfusion-induced cardiomyocyte death via a TLR-4 dependent mechanism. Therefore, in the present study we aimed to test whether decorin, a small leucine-rich proteoglycan closely related to biglycan, could exert cardiocytoprotection and to reveal possible downstream signaling pathways. Methods: Primary cardiomyocytes isolated from neonatal and adult rat hearts were treated with 0 (Vehicle), 1, 3, 10, 30 and 100 nM decorin as 20 h pretreatment and maintained throughout simulated ischemia and reperfusion (SI/R). In separate experiments, to test the mechanism of decorin-induced cardio protection, 3 nM decorin was applied in combination with inhibitors of known survival pathways, that is, the NOS inhibitor L-NAME, the PKG inhibitor KT-5823 and the TLR-4 inhibitor TAK-242, respectively. mRNA expression changes were measured after SI/R injury. Results: Cell viability of both neonatal and adult cardiomyocytes was significantly decreased due to SI/R injury. Decorin at 1, 3 and 10 nM concentrations significantly increased the survival of both neonatal and adult myocytes after SI/R. At 3nM (the most pronounced protective concentration), it had no effect on apoptotic rate of neonatal cardiac myocytes. No one of the inhibitors of survival pathways (L-NAME, KT-5823, TAK-242) influenced the cardiocytoprotective effect of decorin. MYND-type containing 19 (Zmynd19) and eukaryotic translation initiation factor 4E nuclear import factor 1 (Eif4enif1) were significantly upregulated due to the decorin treatment. In conclusion, this is the first demonstration that decorin exerts a direct cardiocytoprotective effect possibly independent of NO-cGMP-PKG and TLR-4 dependent survival signaling.


Subject(s)
Cardiotonic Agents/pharmacology , Decorin/pharmacology , Myocardial Reperfusion Injury/prevention & control , Myocytes, Cardiac/metabolism , Signal Transduction/drug effects , Animals , Cardiotonic Agents/metabolism , Cell Survival/drug effects , Decorin/metabolism , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Myocytes, Cardiac/pathology , Rats , Rats, Wistar
11.
Nat Chem Biol ; 16(6): 667-675, 2020 06.
Article in English | MEDLINE | ID: mdl-32393901

ABSTRACT

N-acylethanolamines (NAEs), which include the endocannabinoid anandamide, represent an important family of signaling lipids in the brain. The lack of chemical probes that modulate NAE biosynthesis in living systems hamper the understanding of the biological role of these lipids. Using a high-throughput screen, chemical proteomics and targeted lipidomics, we report here the discovery and characterization of LEI-401 as a CNS-active N-acylphosphatidylethanolamine phospholipase D (NAPE-PLD) inhibitor. LEI-401 reduced NAE levels in neuroblastoma cells and in the brain of freely moving mice, but not in NAPE-PLD KO cells and mice, respectively. LEI-401 activated the hypothalamus-pituitary-adrenal axis and impaired fear extinction, thereby emulating the effect of a cannabinoid CB1 receptor antagonist, which could be reversed by a fatty acid amide hydrolase inhibitor. Our findings highlight the distinctive role of NAPE-PLD in NAE biosynthesis in the brain and suggest the presence of an endogenous NAE tone controlling emotional behavior.


Subject(s)
Behavior, Animal/drug effects , Enzyme Inhibitors/chemistry , Lipid Metabolism/drug effects , Phosphatidylethanolamines/metabolism , Phospholipase D/antagonists & inhibitors , Amidohydrolases/metabolism , Animals , Blood Proteins/metabolism , Brain/metabolism , Cannabinoid Receptor Antagonists/metabolism , Cell Line, Tumor , Drug Evaluation, Preclinical , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacokinetics , Fear/drug effects , Humans , Male , Mice , Mice, Inbred C57BL , Molecular Structure , Receptors, Cannabinoid/metabolism , Signal Transduction
12.
Hepatology ; 71(4): 1391-1407, 2020 04.
Article in English | MEDLINE | ID: mdl-31469200

ABSTRACT

BACKGROUND AND AIMS: Hepatic cardiomyopathy, a special type of heart failure, develops in up to 50% of patients with cirrhosis and is a major determinant of survival. However, there is no reliable model of hepatic cardiomyopathy in mice. We aimed to characterize the detailed hemodynamics of mice with bile duct ligation (BDL)-induced liver fibrosis, by monitoring echocardiography and intracardiac pressure-volume relationships and myocardial structural alterations. Treatment of mice with a selective cannabinoid-2 receptor (CB2 -R) agonist, known to attenuate inflammation and fibrosis, was used to explore the impact of liver inflammation and fibrosis on cardiac function. APPROACH AND RESULTS: BDL induced massive inflammation (increased leukocyte infiltration, inflammatory cytokines, and chemokines), oxidative stress, microvascular dysfunction, and fibrosis in the liver. These pathological changes were accompanied by impaired diastolic, systolic, and macrovascular functions; cardiac inflammation (increased macrophage inflammatory protein 1, interleukin-1, P-selectin, cluster of differentiation 45-positive cells); and oxidative stress (increased malondialdehyde, 3-nitrotyrosine, and nicotinamide adenine dinucleotide phosphate oxidases). CB2 -R up-regulation was observed in both livers and hearts of mice exposed to BDL. CB2 -R activation markedly improved hepatic inflammation, impaired microcirculation, and fibrosis. CB2 -R activation also decreased serum tumor necrosis factor-alpha levels and improved cardiac dysfunction, myocardial inflammation, and oxidative stress, underlining the importance of inflammatory mediators in the pathology of hepatic cardiomyopathy. CONCLUSIONS: We propose BDL-induced cardiomyopathy in mice as a model for hepatic/cirrhotic cardiomyopathy. This cardiomyopathy, similar to cirrhotic cardiomyopathy in humans, is characterized by systemic hypotension and impaired macrovascular and microvascular function accompanied by both systolic and diastolic dysfunction. Our results indicate that the liver-heart inflammatory axis has a pivotal pathophysiological role in the development of hepatic cardiomyopathy. Thus, controlling liver and/or myocardial inflammation (e.g., with selective CB2 -R agonists) may delay or prevent the development of cardiomyopathy in severe liver disease.


Subject(s)
Cardiomyopathies/etiology , Heart Failure/etiology , Liver Cirrhosis/complications , Receptor, Cannabinoid, CB2/metabolism , Animals , Cardiomyopathies/pathology , Disease Models, Animal , Heart Failure/pathology , Hepatitis/metabolism , Hepatitis/pathology , Inflammation/metabolism , Inflammation/pathology , Liver , Liver Cirrhosis/pathology , Male , Mice , Mice, Inbred C57BL , Myocarditis/metabolism , Myocarditis/pathology , Myocardium/metabolism , Myocardium/pathology , Receptor, Cannabinoid, CB2/agonists , Signal Transduction
13.
Free Radic Biol Med ; 152: 540-550, 2020 05 20.
Article in English | MEDLINE | ID: mdl-31770583

ABSTRACT

STUDY RATIONALE: Hepatorenal syndrome (HRS) is a life-threatening complication of end-stage liver disease characterized by the rapid decline of kidney function. Herein, we explored the therapeutic potential of targeting the cannabinoid-2 receptor (CB2-R) utilizing a commonly used mouse model of liver fibrosis and hepatorenal syndrome (HRS), induced by bile duct ligation (BDL). METHODS: Gene expression analysis, histological evaluation, determination of serum levels of renal injury-biomarkers were used to characterize the BDL-induced organ injury; laser speckle analysis to measure microcirculation in the kidneys. KEY RESULTS: We found that liver injury triggered marked inflammation and oxidative stress in the kidneys of BDL-operated mice. We detected pronounced histopathological alterations with tubular injury paralleled with increased inflammation, oxidative/nitrative stress and fibrotic remodeling both in hepatic and renal tissues as well as endothelial activation and markedly impaired renal microcirculation. This was accompanied by increased CB2-R expression in both the liver and the kidney tissues of diseased animals. A selective CB2-R agonist, HU-910, markedly decreased numerous markers of inflammation, oxidative stress and fibrosis both in the liver and in the kidneys. HU-910 also attenuated markers of kidney injury and improved the impaired renal microcirculation in BDL-operated mice. CONCLUSIONS: Our results suggest that oxidative stress, inflammation and microvascular dysfunction are key events in the pathogenesis of BDL-associated renal failure. Furthermore, we demonstrate that targeting the CB2-R by selective agonists may represent a promising new avenue to treat HRS by attenuating tissue and vascular inflammation, oxidative stress, fibrosis and consequent microcirculatory dysfunction in the kidneys.


Subject(s)
Cannabinoids , Hepatorenal Syndrome , Animals , Bile Ducts/surgery , Disease Models, Animal , Hepatorenal Syndrome/drug therapy , Hepatorenal Syndrome/etiology , Hepatorenal Syndrome/metabolism , Liver/metabolism , Mice , Microcirculation , Oxidative Stress , Receptors, Cannabinoid/metabolism
14.
Sci Rep ; 9(1): 17167, 2019 11 20.
Article in English | MEDLINE | ID: mdl-31748600

ABSTRACT

Alcoholic liver disease (ALD) causes significant morbidity and mortality, and pharmacological treatment options are limited. In this study, we evaluated the PCSK9 inhibitor alirocumab, a monoclonal antibody that robustly reduces low-density lipoprotein cholesterol (LDL-C), for the treatment of ALD using a rat model of chronic alcohol exposure. Alirocumab (50 mg/kg) or vehicle was administered weekly for 6 weeks to rats receiving a 12% alcohol liquid diet or an isocaloric control diet. At the end of the alcohol exposure protocol, serum and liver samples were obtained for molecular characterization and histopathological analysis. PCSK9 inhibition with alirocumab attenuated alcohol-induced hepatic triglyceride accumulation through regulation of lipid metabolism (mRNA expression of modulators of fatty acid synthesis (FAS) and catabolism (PPARα and CPT1)), hepatocellular injury (ALT), hepatic inflammation (mRNA expression of pro-inflammatory cytokines/chemokines (TNFa, IL-1ß, IL-22, IL-33, IL-17α, IL-2, MIP-2, and MCP-1), and neutrophil infiltration (myeloperoxidase staining)). Alirocumab treatment also attenuated alcohol-induced PCSK9 mRNA elevation and upregulated LDL-receptor (LDL-R) via modulation of the transcription factors (SREBP-1, SREBP-2, and E2F1) in liver. We demonstrated that chronic anti-PCSK9 treatment using the monoclonal antibody alirocumab attenuated alcohol-induced steatohepatitis in the rat model. Given the large unmet clinical need for effective and novel treatments for ALD, anti-PCSK9 treatment with the monoclonal antibody that spares liver metabolism is a viable new therapeutic possibility. Future studies are needed to elucidate the exact role of PCSK9 in ALD and alcohol use disorder (AUD) and to evaluate efficacy and safety of anti-PCSK9 treatment in clinical populations with ALD/AUD.


Subject(s)
Antibodies, Monoclonal, Humanized/pharmacology , Hypolipidemic Agents/pharmacology , Liver Diseases, Alcoholic/drug therapy , PCSK9 Inhibitors , Alcoholism/drug therapy , Alcoholism/metabolism , Animals , Cholesterol, LDL/metabolism , Disease Models, Animal , Ethanol/adverse effects , Fatty Liver/drug therapy , Fatty Liver/metabolism , Lipid Metabolism/drug effects , Lipogenesis/drug effects , Liver/drug effects , Liver/metabolism , Liver Diseases, Alcoholic/metabolism , Male , Rats , Rats, Sprague-Dawley , Receptors, LDL/metabolism , Transcription Factors/metabolism
15.
JACC Basic Transl Sci ; 4(5): 625-637, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31768478

ABSTRACT

Excessive binge alcohol drinking may adversely affect cardiovascular function. In this study we characterize the detailed hemodynamic effects of an acute alcohol binge in mice using multiple approaches and investigate the role of the endocannabinoid-cannabinoid 1 receptor (CB1-R) signaling in these effects. Acute alcohol binge was associated with elevated levels of cardiac endocannabinoid anandamide and profound cardiovascular dysfunction lasting for several hours and redistribution of circulation. These changes were attenuated by CB1-R antagonist or in CB1-R knockout mice. Our results suggest that a single alcohol binge has profound effects on the cardiovascular system, which involve endocannabinoid-CB1-R signaling.

16.
Front Physiol ; 10: 1564, 2019.
Article in English | MEDLINE | ID: mdl-31992989

ABSTRACT

INTRODUCTION: The use of comorbidity models is crucial in cardioprotective drug development. Hypercholesterolemia causes endothelial and myocardial dysfunction, as well as aggravates ischemia/reperfusion (I/R)-induced myocardial injury. Endogenous cardioprotective mechanisms against I/R are impaired in hyperlipidemic and hyperglycemic in vivo animal models. Therefore, our aim was to develop a medium throughput comorbidity cell-based test system of myocardial I/R injury, hypercholesterolemia and hyperglycemia that mimics comorbidity conditions. METHODS: Cardiac myocytes isolated from neonatal or adult rat hearts were cultured in control or in three different hypercholesterolemic media with increasing cholesterol content (hiChol) or hiChol + hyperglycemic medium, respectively. Each group was then subjected to simulated ischemia/reperfusion (SI/R) or corresponding normoxic condition, respectively. Cholesterol uptake was tested by Filipin staining in neonatal cardiac myocytes. Cell viability, total cell count and oxidative stress, i.e., total reactive oxygen species (ROS) and superoxide level were measured by fluorescent assays. RESULTS: Neonatal cardiac myocytes took up cholesterol from the different hiChol media at a concentration-dependent manner. In normoxia, viability of hiChol neonatal cardiac myocytes was not significantly changed, however, superoxide levels were increased as compared to vehicle. After SI/R, the viability of hiChol neonatal cardiac myocytes was decreased and total ROS level was increased as compared to vehicle. HiChol combined with hyperglycemia further aggravated cell death and oxidative stress in normoxic as well as in SI/R conditions. Viability of hiChol adult cardiac myocytes was significantly decreased and superoxide level was increased in normoxia and these changes were further aggravated by SI/R. HiChol combined with hyperglycemia further aggravated cell death, however level of oxidative stress increased only in normoxic condition. CONCLUSION: HiChol rat cardiac myocytes showed reduction of cell viability and increased oxidative stress, which were further aggravated by SI/R and with additional hyperglycemia. This is the first demonstration that the combination of the current hypercholesterolemic medium and SI/R in cardiac myocytes mimics the cardiac pathology of the comorbid heart with I/R and hypercholesterolemia.

17.
JCI Insight ; 3(11)2018 06 07.
Article in English | MEDLINE | ID: mdl-29875325

ABSTRACT

The macrophage is a major phagocytic cell type, and its impaired function is a primary cause of immune paralysis, organ injury, and death in sepsis. An incomplete understanding of the endogenous molecules that regulate macrophage bactericidal activity is a major barrier for developing effective therapies for sepsis. Using an in vitro killing assay, we report here that the endogenous purine ATP augments the killing of sepsis-causing bacteria by macrophages through P2X4 receptors (P2X4Rs). Using newly developed transgenic mice expressing a bioluminescent ATP probe on the cell surface, we found that extracellular ATP levels increase during sepsis, indicating that ATP may contribute to bacterial killing in vivo. Studies with P2X4R-deficient mice subjected to sepsis confirm the role of extracellular ATP acting on P2X4Rs in killing bacteria and protecting against organ injury and death. Results with adoptive transfer of macrophages, myeloid-specific P2X4R-deficient mice, and P2rx4 tdTomato reporter mice indicate that macrophages are essential for the antibacterial, antiinflammatory, and organ protective effects of P2X4Rs in sepsis. Pharmacological targeting of P2X4Rs with the allosteric activator ivermectin protects against bacterial dissemination and mortality in sepsis. We propose that P2X4Rs represent a promising target for drug development to control bacterial growth in sepsis and other infections.


Subject(s)
Macrophages/immunology , Receptors, Purinergic P2X4/metabolism , Sepsis/immunology , Adoptive Transfer , Animals , Disease Models, Animal , Escherichia coli/pathogenicity , Humans , Ivermectin/administration & dosage , Macrophages/metabolism , Macrophages/transplantation , Male , Mice , Mice, Knockout , Mice, Transgenic , Receptors, Purinergic P2X4/genetics , Receptors, Purinergic P2X4/immunology , Sepsis/drug therapy , Sepsis/microbiology , Sepsis/mortality , Staphylococcus aureus/immunology , Staphylococcus aureus/pathogenicity
18.
Sci Rep ; 8(1): 7647, 2018 05 16.
Article in English | MEDLINE | ID: mdl-29769710

ABSTRACT

The transcriptional regulator JDP2 (Jun dimerization protein 2) has been identified as a prognostic marker for patients to develop heart failure after myocardial infarction. We now performed in vivo studies on JDP2-overexpressing mice, to clarify the impact of JDP2 on heart failure progression. Therefore, during birth up to the age of 4 weeks cardiac-specific JDP2 overexpression was prevented by doxycycline feeding in transgenic mice. Then, JDP2 overexpression was started. Already after 1 week, cardiac function, determined by echocardiography, decreased which was also resembled on the cardiomyocyte level. After 5 weeks blood pressure declined, ejection fraction and cardiac output was reduced and left ventricular dilatation developed. Heart weight/body weight, and mRNA expression of ANP, inflammatory marker genes, collagen and fibronectin increased. Collagen 1 protein expression increased, and fibrosis developed. As an additional sign of elevated extracellular matrix remodeling, matrix metalloproteinase 2 activity increased in JDP2 mice. Thus, JDP2 overexpression is deleterious to heart function in vivo. It can be concluded that JDP2 overexpression provokes cardiac dysfunction in adult mice that is accompanied by hypertrophy and fibrosis. Thus, induction of JDP2 is a maladaptive response contributing to heart failure development.


Subject(s)
Cardiomegaly/pathology , Fibrosis/pathology , Heart Failure/pathology , Myocardial Infarction/pathology , Myocytes, Cardiac/pathology , Repressor Proteins/metabolism , Animals , Cardiomegaly/etiology , Cells, Cultured , Fibrosis/etiology , Heart Failure/etiology , Mice , Mice, Inbred C57BL , Myocardial Infarction/etiology , Myocytes, Cardiac/metabolism , Repressor Proteins/genetics
19.
Hepatology ; 68(4): 1519-1533, 2018 10.
Article in English | MEDLINE | ID: mdl-29631342

ABSTRACT

Tubular dysfunction is an important feature of renal injury in hepatorenal syndrome (HRS) in patients with end-stage liver disease. The pathogenesis of kidney injury in HRS is elusive, and there are no clinically relevant rodent models of HRS. We investigated the renal consequences of bile duct ligation (BDL)-induced hepatic and renal injury in mice in vivo by using biochemical assays, real-time polymerase chain reaction (PCR), Western blot, mass spectrometry, histology, and electron microscopy. BDL resulted in time-dependent hepatic injury and hyperammonemia which were paralleled by tubular dilation and tubulointerstitial nephritis with marked upregulation of lipocalin-2, kidney injury molecule 1 (KIM-1) and osteopontin. Renal injury was associated with dramatically impaired microvascular flow and decreased endothelial nitric oxide synthase (eNOS) activity. Gene expression analyses signified proximal tubular epithelial injury, tissue hypoxia, inflammation, and activation of the fibrotic gene program. Marked changes in renal arginine metabolism (upregulation of arginase-2 and downregulation of argininosuccinate synthase 1), resulted in decreased circulating arginine levels. Arginase-2 knockout mice were partially protected from BDL-induced renal injury and had less impairment in microvascular function. In human-cultured proximal tubular epithelial cells hyperammonemia per se induced upregulation of arginase-2 and markers of tubular cell injury. CONCLUSION: We propose that hyperammonemia may contribute to impaired renal arginine metabolism, leading to decreased eNOS activity, impaired microcirculation, tubular cell death, tubulointerstitial nephritis and fibrosis. Genetic deletion of arginase-2 partially restores microcirculation and thereby alleviates tubular injury. We also demonstrate that BDL in mice is an excellent, clinically relevant model to study the renal consequences of HRS. (Hepatology 2018; 00:000-000).


Subject(s)
Acute Kidney Injury/metabolism , Arginine/metabolism , Hepatorenal Syndrome/pathology , Kidney Tubules/pathology , Nitric Oxide Synthase/metabolism , Acute Kidney Injury/pathology , Acute Kidney Injury/physiopathology , Animals , Biomarkers/metabolism , Biopsy, Needle , Disease Models, Animal , Disease Progression , Hepatorenal Syndrome/mortality , Hepatorenal Syndrome/physiopathology , Humans , Immunohistochemistry , Kidney Tubules/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Random Allocation , Risk Assessment , Sensitivity and Specificity , Severity of Illness Index , Survival Rate
20.
Front Pharmacol ; 9: 296, 2018.
Article in English | MEDLINE | ID: mdl-29674965

ABSTRACT

The objective of our present study is to develop novel inhibitors for MMP-2 for acute cardioprotection. In a series of pilot studies, novel substituted carboxylic acid derivatives were synthesized based on imidazole and thiazole scaffolds and then tested in a screeening cascade for MMP inhibition. We found that the MMP-inhibiting effects of imidazole and thiazole carboxylic acid-based compounds are superior in efficacy in comparison to the conventional hydroxamic acid derivatives of the same molecules. Based on these results, a 568-membered focused library of imidazole and thiazole compounds was generated in silico and then the library members were docked to the 3D model of MMP-2 followed by an in vitro medium throughput screening (MTS) based on a fluorescent assay employing MMP-2 catalytic domain. Altogether 45 compounds showed a docking score of >70, from which 30 compounds were successfully synthesized. Based on the MMP-2 inhibitory tests using gelatin zymography, 7 compounds were then selected and tested in neonatal rat cardiac myocytes subjected to simulated I/R injury. Six compounds showed significant cardio-cytoprotecion and the most effective compound (MMPI-1154) significantly decreased infarct size when applied at 1 µM in an ex vivo model for acute myocardial infarction. This is the first demonstration that imidazole and thiazole carboxylic acid-based compounds are more efficacious MMP-2 inhibitor than their hydroxamic acid derivatives. MMPI-1154 is a promising novel cardio-cytoprotective imidazole-carboxylic acid MMP-2 inhibitor lead candidate for the treatment of acute myocardial infarction.

SELECTION OF CITATIONS
SEARCH DETAIL
...